Eggbot at MadCamp

Egg Egg

Pete over at RasterWeb! recently posted that he’s planning an Eggbot session at MadCamp. MadCamp is a BarCamp – an open-format conference where the attendees are the presenters — in Madision, Wisconsin on Saturday, August 27. If you’re near Madison and interested in learning more about the Eggbot, unconferences, or any of the other topics that will be presented, go check it out!

We’ve featured Pete’s work with the Eggbot before in our roundup of Eggbot art, and we’re thrilled to see him sharing his mad Eggbot skilz. He invites MadCamp attendees to bring files to print on the Eggbot, and his post provides a nice brief primer on what it takes to get designs sharpie-ready.


Photo by Pete Prodoehl released under cc by-nc-sa license. Egg Egg design also by Pete Prodoehl and released to the public domain.

Octolively: Digital interactive LED surfaces

Octolively Array: 8 inches wide

Octolively is an all-new, open source interactive LED surface kit that we’re releasing today. Octolively features high resolution– an independent motion sensor for every LED, stand-alone operation, a variety of response functions, and easy scaling for large grids.

Warm white (left), Regular "cool" white (right)

Octolively represents our fourth generation of interactive LED surfaces.

Long-time readers might recall the original Interactive LED Dining Table, the infamous Interactive LED Coffee Tables, or the third-generation, not-very-creatively-named Interactive LED Panels. All of these surfaces were based on fully-analog circuitry with large circuit boards and a fairly high ratio of LEDs to sensors– typically 20:1.

Octolively: single unit, powered down-2

Octolively, by contrast, is based on smaller, lower-cost circuit board modules, “only” 4×8 inches in size. Part of the reason for this is so that there’s more flexibility in making arbitrarily shaped arrays. Arrays can now be as skinny as 4″ wide, or as wide as you like.

Each module features 8 LEDs and 8 independent proximity sensors– one for each and every LED. The LEDs are (huge) 10 mm types, and that chip in the middle of the board is an (also huge) ATmega164 microcontroller.
Each sensor consists of an infrared LED and phototransistor pair, which– together with polling and readout from the microcontroller –acts as reflective motion sensor. The LEDs are spaced on a 2-inch grid, and the edge connectors allow boards to be tiled seamlessly.

Because the circuit is now primarily digital, it’s easy to store a variety of response functions in the microcontroller. Our standard firmware contains 8 different response functions– fades, ripples, shadows and sparkles, which you can change with a button press. As it’s an open source project, we’ll expect that (in time), others will become available as well.

Octolively: 3x3 grid of boards

And, because the entire circuit is self-contained on the module, the surface scales effortlessly– you get very high resolution over huge areas without bandwidth bottlenecks, and no need for a central computer.

Of course, static pictures don’t do much justice for interactive LED surfaces. (We’ve embedded our video above. If you can’t see it here, click through to YouTube.)

Octolively, warm white LEDs

And doesn’t that look good with warm white LEDs?

Octolively begins shipping next week. Additional details– including the datasheet and documentation links –are available on the product page.

A stunning display of natural birefringence

Penn Museum - 2

In a recent visit to the Penn Museum— the University of Pennsylvania Museum of Archaeology and Anthropology –we came across a most unusual artifact in their Chinese Rotunda: a giant crystal ball:

Penn Museum - 5

For a higher-quality image– without the display case– take a look here.

Here is what the display placard has to say:

Penn Museum - 3

Crystal Sphere
Rock crystal, Silver Stand
Qing Dynasty (1644-1911 CE)
China

An ornamental treasure of the Imperial palace in Beijing, the crystal sphere was said to have been a favorite possession of the Empress Dowager Cixi (1836 -1908 CE), under whose watch imperial China crumbled. The rock crystal originated in Burma and was shaped into a sphere though years of constant rotation in a semi-cylindrical container filled with emery, garnet powder, and water. The forty-nine pound flawless crystal sphere is believed to be the second largest in the world. The stand in the shape of a wave was designed by a Japanese artisan.

So, not only is it a giant crystal ball, but it’s a historically interesting giant crystal ball. But besides that– and its brief modern stint as a hat rack –what’s genuinely remarkable about this particular artifact is that it’s made from a chunk of rock crystal, better known as quartz crystal.

Now, those “crystal balls” that run-of-the-mill fortune tellers use are often just glass— glorified playground marbles or perhaps so-called lead crystal, which is actually just another type of glass.

Quartz crystal, on the other hand, has a structured atomic lattice that leads to some very interesting physical properties including piezoelectricity, triboluminescence, and birefringence. These properties arise from the crystal structure itself; they are typically minimal or absent in glasses such as fused silica (glass made by melting quartz crystal).

Penn Museum - 4

While the museum probably wouldn’t want you compressing or grinding their crystal ball for piezoelectricity or triboluminescence experiments, the birefringence is boldly sitting out on display.

Let’s look a little closer:

Penn Museum - 6

The sign, across the room reading “TEXTILES” is not just inverted like it would be with a spherical lens, but also– plain as day –appears as double image, even through our single camera lens.

Why? Quartz crystal is a birefringent material, which means that light rays entering the material experience two different indices of refraction, depending on their polarization and orientation with respect to the crystal lattice. In practice, our eyes see all polarizations, so this means that the crystal ball acts like a superposition of two glass balls with different indices of refraction– and light rays entering the sphere at any given point can follow two different paths to reach your eyes. Hence the double image.

It’s also worth noting that the two separate images are composed of photons with perpendicular polarization. If you were to look at this sphere through a linear polarizer (e.g., one lens of the 3D glasses that they use in modern movie theaters), you could turn it such that only one of the two images was visible at a time.

Birefringence is not particularly rare, and there are materials (like certain forms of calcite) that have huge, easily visible birefringence. Optical devices made from flawless natural calcite, exploiting this property, are tremendously important to scientific research and industry.

We tend to think of a quartz crystal as being perfectly clear– not something that gives you a double image when you look through it. That’s because quartz is only very weakly birefringent, especially when compared to calcite. Quartz is, however, still extensively used in industry in applications for which high transparency and very slight birefringence are key, such as optical wave plates. And, what’s truly remarkable about the Penn Museum sphere is that this tiny property– usually so hard to see –is so plainly visible to the human eye.

Penn Museum - 8

Finally, as we mentioned, the amount of birefringence depends on the orientation of light rays with respect to the crystal itself.

This means that if we walk one quarter circle around the sphere to a point where we’re closer to looking directly along (or perhaps, perpendicular to) the optical axis of the quartz sphere, the image suddenly becomes (if you’ll pardon the pun) crystal clear.

Maker Faire Detroit 2011

Dragon

We’ve put up a set of photos from Maker Faire Detroit for your enjoyment. The dragon above was one of our favorites.


Power chain fingers

Articulated hand from servo motors, fishing line, and energy chain.


Easy Cheese Printer

HackPittsburgh used the Easy Cheese nozzle for direct and easy cheesy printing.


Steam bike

The Henry Ford staff were running some of their replica vehicles, including this steam motor bike.


Power Races

The Power Races were highly entertaining.


Power Races

This racer from OmniCorpDetroit even rickrolled the crowd.

You can find a few more Maker Faire pictures in the flickr set.


Chrysler Museum

We’ve also posted a few brightwork pictures from the Walter P. Chrysler Museum for those chrome lovers out there.

Field trip: Marine Mammal Center

Marine Mammal Center

The Marine Mammal Center, located in Sausalito, California, is an institution dedicated to the study and health of marine mammals, particularly seals, sea lions, otters, and whales. In their extensive veterinary programs, they rescue, rehabilitate and often release many of these animals, and work to identify causes of illness and injury.

Visitors to the center can see some of the healthier patients (not the ones in the ICU) in these outdoor hospital pens shaded by solar panels as well as the research labs and a great many exhibits about these creatures.

Marine Mammal Center

We were recently invited to a behind-the-scenes tour of the center to get a first hand look at some of the amazing equipment and machinery that is needed to run a hospital for these unique patients.

In what follows, we’ll show you some of the neat things that most visitors don’t get to see, from glowing purple plasma to Nike missile silo blast doors.

Continue reading Field trip: Marine Mammal Center

Play Tennis for Two in Florida and Arizona



The folks at the hackerspace FamiLAB in Central Florida just wrote about how they used our
Tennis for Two article to make a working demo for the Retro Arcade event on Saturday in conjunction with the Games People Play:
The Evolution of Video Games
exhibit at the Orange County Regional History Center.

Tennis for Two was one of the earliest electronic games, dating back to 1958, so it’s a perfect fit for the exhibit. If you’re in the area, go try it out!

Update: HeatSync Labs in Arizona is having a retro gaming night on Thursday, July 21, and will also have a Tennis for Two available for play!