Tag Archives: LEDs

A new Kraftwerk-inspired LED tie kit?

LED Tie - 28.jpg

Well, almost— With a breath of new firmware, our Larson Scanner kit takes us on a trip to the late 1970’s.

In the old videos of electronic music pioneers Kraftwerk performing their classic The Robots, a prominent prop is the animated LED necktie worn by each member of the band. If you haven’t seen this, or it’s been a while, you can see it right here at YouTube. (Additional viewing, if you’re so inclined: Die Roboter, the German version.)

The Kraftwerk tie has nine red LEDs in a vertical row, and one lights up after the one above it in a simple descending pattern. And what does it say to the world? One thing only, loud and clear: “We are the robots.” Now, if you’re anything like us, the most important question going through your head at this point is something along the lines of “why am I not wearing a tie like that right now?

larson3

The good news is that it’s actually easy to make one. And the starting point? A circuit with nine red LEDs and just the right spacing: our open-source Larson Scanner kit. With minor modifications– a software change and dumping the heavy 2xAA battery pack–it makes a pretty awesome tie. In what follows, we’ll show you how to build your own, complete with video.

Continue reading A new Kraftwerk-inspired LED tie kit?

Octolively: Digital interactive LED surfaces

Octolively Array: 8 inches wide

Octolively is an all-new, open source interactive LED surface kit that we’re releasing today. Octolively features high resolution– an independent motion sensor for every LED, stand-alone operation, a variety of response functions, and easy scaling for large grids.

Warm white (left), Regular "cool" white (right)

Octolively represents our fourth generation of interactive LED surfaces.

Long-time readers might recall the original Interactive LED Dining Table, the infamous Interactive LED Coffee Tables, or the third-generation, not-very-creatively-named Interactive LED Panels. All of these surfaces were based on fully-analog circuitry with large circuit boards and a fairly high ratio of LEDs to sensors– typically 20:1.

Octolively: single unit, powered down-2

Octolively, by contrast, is based on smaller, lower-cost circuit board modules, “only” 4×8 inches in size. Part of the reason for this is so that there’s more flexibility in making arbitrarily shaped arrays. Arrays can now be as skinny as 4″ wide, or as wide as you like.

Each module features 8 LEDs and 8 independent proximity sensors– one for each and every LED. The LEDs are (huge) 10 mm types, and that chip in the middle of the board is an (also huge) ATmega164 microcontroller.
Each sensor consists of an infrared LED and phototransistor pair, which– together with polling and readout from the microcontroller –acts as reflective motion sensor. The LEDs are spaced on a 2-inch grid, and the edge connectors allow boards to be tiled seamlessly.

Because the circuit is now primarily digital, it’s easy to store a variety of response functions in the microcontroller. Our standard firmware contains 8 different response functions– fades, ripples, shadows and sparkles, which you can change with a button press. As it’s an open source project, we’ll expect that (in time), others will become available as well.

Octolively: 3x3 grid of boards

And, because the entire circuit is self-contained on the module, the surface scales effortlessly– you get very high resolution over huge areas without bandwidth bottlenecks, and no need for a central computer.

Of course, static pictures don’t do much justice for interactive LED surfaces. (We’ve embedded our video above. If you can’t see it here, click through to YouTube.)

Octolively, warm white LEDs

And doesn’t that look good with warm white LEDs?

Octolively begins shipping next week. Additional details– including the datasheet and documentation links –are available on the product page.

Does this LED sound funny to you?

flickerLED - 01

flickerLED - 02

At first glance, these might appear to be normal 5 mm (“T-1 3/4”) clear lens ultrabright yellow LEDs. However, they’re actually “candle flicker” LEDs— self-flickering LEDs with a built-in flicker circuit that emulates the seemingly-random behavior of a candle flame.

In the close-up photo above, you can actually make out the glowing LED die on the left side, and a corresponding-but-not-glowing block on the right: the flicker circuit itself. In what follows, we’ll take a much closer look, and even use that little flicker chip to drive larger circuitry. Continue reading Does this LED sound funny to you?

PeggyDraw 2

peggydraw2

 

We are pleased to finally release PeggyDraw 2, a little bit of long-delayed software. It’s a Processing application that you can use to draw simple 1-bit animations on a 25×25 grid. The neat bit, of course, is that you can press the “Save” button, and the file that it saves is actually an Arduino program, ready to be programmed onto a Peggy 2.

 

You can download PeggyDraw 2 right here. It’s fully built in Processing, so that it works on Mac, Windows, and Linux. Also, open source, designed to be adaptable.
Some things to note about this program:

 

  • If you don’t have Processing on your computer, download it here.
  • The editing interface is easy point-and-click. Try it out to see how it works.
  • You can individually pick different delay times per frame, as low as 20 ms, or give every frame the same duration.
  • The frame data is stored in Arduino program memory, so you’re only limited by the flash memory in terms of frame number– over 250 frames fit on an ATmega328P.
  • The output file is located in the PeggyDraw2 sketch directory, inside a directory named “PeggyProgram” “data.” The file is called “PeggyProgram.pde.”
  • You can both save a file and later reload it for editing.
  • The formats used in PeggyDraw 2 should be easily adaptable to write sequences for other types of LED grids, even of different aspect ratio and control software.

And, special thanks to Matt Mets, http://cibomahto.com for assistance with Processing.
Update, 3/19/2011: We’ve posted a new version, PeggyDraw 2 v. 1.1, available here. Note that the output file is now stored in the “data” directory, not a separate “PeggyProgram” directory.

A pumpkin that sleeps like a Mac

sequence - 06   sequence - 02sequence - 10   sequence - 16

Here’s an neat idea for a jack-o’-lantern: Hide a single white LED just beneath the thin surface of the pumpkin. And program it with the same slow “breathing” effect that indicates sleep on Mac computers.

The result? A pumpkin that sleeps like a Mac. It’s actually quite striking, in part because the effect becomes invisible every few seconds. It’s also an easy microcontroller project: our demonstration video and build instructions follow. Continue reading A pumpkin that sleeps like a Mac

Bottles of Hope Chandelier

Bottles Of Hope By Peter Sid from peter sid on Vimeo.

Peter Sid wrote in to tell us about his “Bottles of Hope” chandelier that he has entered into a design contest at Apartment Therapy.

Evocative of the famous Droog Milk Bottle Lamp, Peter’s design features an array of 108 chemotherapy bottles, individually lit by LEDs. (Chemo bottles have been decorated and repurposed since 1999 by the Bottles of Hope project, hence the name.)

We’ve embedded Peter’s slideshow video above. If you can’t see it here, you can click here to view it at Vimeo.
And, if you look closely, you might spot the Peggy 2LE that he used to drive his LEDs.

Voting for the contest is this week, and I’m sure that Peter would appreciate your vote.

A funny batch of LEDs

10 mm LEDs

A few weeks ago we got a batch of LEDs– a sample order from a new vendor. These are 10 mm diffused white LEDs, much like the ones that we use on the Peggy 2 or in the LED Ghosties.

On the surface, they look okay. But after lighting them up, we noticed something funny in a few of them that led us to discover their deep dark– or really, shallow and clear –secret. Continue reading A funny batch of LEDs

On the design of the Bulbdial Clock

bulbdial-details - 12

bulbdial-details - 20

One of our favorite projects of the last year is our Bulbdial Clock, an LED shadow clock based on an idea from Ironic Sans. And, while we have written a fair bit about it, we haven’t yet taken the time to describe some of the interesting technical details.
So in what follows here, we discuss some of those details, with an emphasis on a few in particular that we’ve been asked about. First, the process of designing and prototyping “funny shaped” circuit boards, but also charlieplexing LEDs in a mixed array, and (finally) getting that rear-projection scheme to work.
Continue reading On the design of the Bulbdial Clock

Evil Mad Scientist Laboratories: Year 4

Evil

Happy birthday to us! Evil Mad Scientist Laboratories has now been around for four years. We’ve collected some interesting projects from this past year to celebrate.

Microcontroller and Electronics Projects:

Tabletop Pong
Tabletop Pong

Breadboard
Moving from breadboard to protoboard

Revenge!
Revenge of the Cherry Tomatoes

drink making unit
Drink making unit

pin 1
Finding pin 1

xmega - 2
Say hello to xmega

Peggydot
Adding a Chronodot to Peggy 2

Meggy Twitter Reader
Meggy Jr RGB Twitter Reader

twisted wire bundle
Twisted Wire Bundles

LED graph
Some thoughts on throwies

rovin pumpkin
Rovin’ pumpkin

ADXL335 - 10
Accelerometer with an AVR (updated)

LEDcalc - 20
Wallet-size LED Resistance Calculator

Science:

seeing magnetic fields
Seeing Magnetic Fields

Ice Spikes
Ice Spikes

opposition effect in clover
Opposition effect

Kitchen Science 18
Litmus Candy

Beans day five
Gibberellic Acid and Giantism in Sprouts

Simple LED Projects:

fake seven segment display
Fake seven segment display

LED-lit sea urchin
LED-lit sea urchins

Edge Lit Cards
Refining edge-lit cards

Food Hacking:

Ice Cream Gyoza -13
Ice Cream Gyoza

Lemon Pickle
Lemon Pickle

The array
Spices

coffee bean cooler
DIY coffee bean cooler

Marmalade 30
Marmalade: easier than it looks

AtomicCookies 7
Atomic Cookies

asteroids cookies
Asteroids (the edible kind)

Crunchy Frogs01
Crunchy Frog

Kit Projects:

tortiseshell
Bulbdial Clock Kit

Peggy2le-end
Peggy 2LE

Scale
LED Hanukkah Menorah Kit

Larson Scanner
Larson Scanner

D12 bag8
Handbag of Holding Kits

Crafty Projects:

arecibo 2
SETI Scarf

scrap acrylic
Scrap acrylic shelf

Tombstone
24 hour tombstones

ipad 3
iPad lap stand

Custom iron ons 10
Custom iron-on techniques

Geek Design:

symmetrisketch
SymmetriSketch

Typographic Coasters
Typgraphical Character Coasters

Ornamental Components 08
Ornamental Components

Cat String 6
Radio controlled string

Bookend - 9
Bookends for physics geeks

Lego business cards-2
Lego Business Cards

Tie Stools2
Portable Stools

And, don’t forget, you can win a Peggy 2 or one of 13 other prizes in our clock
concept contest
, going on this week.

Related: